The collagen type I alpha 1 (COL1A1, OMIM #120,150) gene, encoding the alpha-1 chain of type I collagen (UniProt #P02452), plays a key role in life-homeostasis due to its remarkable involvement in collagen synthesis. It is a promising candidate gene implicated in the pathogenesis of cervical insufficiency (CI). This study aimed to identify genetic variations within the COL1A1 gene that contribute to the development of CI. Polymerase chain reaction (PCR) and amplicon sequencing were implemented for single nucleotide polymorphisms (SNPs) detection (+â1245G/T, SP1 rs1800012), which revealed wild-type sequence for targeted SNPs in enrolled proband indicated negative results regarding COL1A1 gene involvement for current form of CI. It allows further investigation of other closely connected genes probed in this study. Computational approaches viz. Protein-protein interaction (PPI), gene ontology (GO), and pathway participation were used to identify the crucial hub genes and signaling pathways for COL1A1 and CI. Using the Yet Another Scientific Artificial Reality Application (YASARA) software, molecular docking, and molecular dynamic (MD) simulation with the oxytocin (CID 439,302), estradiol (CID 129,728,744), progesterone (CID 5994) and hydroxyprogesterone (CID 150,788) were done. Interactive bioinformatics analysis demonstrated that the COL1A1 and more than 10 collagen sister genes had a strong connection with CI. In sum, the findings of this study provide insights into a modus operandi that can be utilized to illuminate the path toward studying sister genes and smooth diagnosis of CI. These findings have implications for understanding the foundational process of the condition and potentially developing screening, diagnostic, and therapeutic interventions.
Systems biology approach: identification of hub genes, signaling pathways, and molecular docking of COL1A1 gene in cervical insufficiency.
系统生物学方法:识别宫颈机能不全中的枢纽基因、信号通路和 COL1A1 基因的分子对接
阅读:7
作者:Shah Sushma, Trivedi Pooja, Ghanchi Mohammadfesal, Sindhav Gaurang, Doshi Haresh, Verma Ramtej J
| 期刊: | In Silico Pharmacol | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 May 14; 12(1):45 |
| doi: | 10.1007/s40203-024-00218-z | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
