Scalable, compressed phenotypic screening using pooled perturbations

利用合并扰动进行可扩展、压缩的表型筛选

阅读:2
作者:Nuo Liu # ,Walaa E Kattan # ,Benjamin E Mead # ,Conner Kummerlowe # ,Thomas Cheng ,Sarah Ingabire ,Jaime H Cheah ,Christian K Soule ,Anita Vrcic ,Jane K McIninch ,Sergio Triana ,Manuel Guzman ,Tyler T Dao ,Joshua M Peters ,Kristen E Lowder ,Lorin Crawford ,Ava P Amini ,Paul C Blainey ,William C Hahn ,Brian Cleary ,Bryan Bryson ,Peter S Winter ,Srivatsan Raghavan ,Alex K Shalek

Abstract

High-throughput phenotypic screens using biochemical perturbations and high-content readouts are constrained by limitations of scale. To address this, we establish a method of pooling exogenous perturbations followed by computational deconvolution to reduce required sample size, labor and cost. We demonstrate the increased efficiency of compressed experimental designs compared to conventional approaches through benchmarking with a bioactive small-molecule library and a high-content imaging readout. We then apply compressed screening in two biological discovery campaigns. In the first, we use early-passage pancreatic cancer organoids to map transcriptional responses to a library of recombinant tumor microenvironment protein ligands, uncovering reproducible phenotypic shifts induced by specific ligands distinct from canonical reference signatures and correlated with clinical outcome. In the second, we identify the pleotropic modulatory effects of a chemical compound library with known mechanisms of action on primary human peripheral blood mononuclear cell immune responses. In sum, our approach empowers phenotypic screens with information-rich readouts to advance drug discovery efforts and basic biological inquiry.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。