Targeting the distinct metabolic needs of tumor cells has recently emerged as a promising strategy for cancer therapy. The heterogeneous, context-dependent nature of cancer cell metabolism, however, poses challenges in identifying effective therapeutic interventions. Here, we utilize various unsupervised and supervised multivariate modeling approaches to systematically pinpoint recurrent metabolic states within hundreds of cancer cell lines, elucidate their association with tumor lineage and growth environments, and uncover vulnerabilities linked to their metabolic states across diverse genetic and tissue contexts. We validate key findings via analysis of data from patient-derived tumors and pharmacological screens, and by performing new genetic and pharmacological experiments. Our analysis uncovers new synthetically lethal associations between the tumor metabolic state (e.g., oxidative phosphorylation), driver mutations (e.g., loss of tumor suppressor PTEN), and actionable biological targets (e.g., mitochondrial electron transport chain). Investigating the mechanisms underlying these relationships can inform the development of more precise and context-specific, metabolism-targeted cancer therapies.
Multivariate analysis of metabolic state vulnerabilities across diverse cancer contexts reveals synthetically lethal associations.
阅读:2
作者:Abecunas Cara, Kidd Audrey D, Jiang Ying, Zong Hui, Fallahi-Sichani Mohammad
期刊: | bioRxiv | 影响因子: | 0.000 |
时间: | 2024 | 起止号: | 2024 Jul 10 |
doi: | 10.1101/2023.11.28.569098 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。