Cotyledon opening during seedling deetiolation is determined by ABA-mediated splicing regulation.

幼苗去黄化过程中子叶的开放是由脱落酸(ABA)介导的剪接调控决定的

阅读:10
作者:Martín Guiomar, Confraria Ana, Zapata Irene, Larran Alvaro Santiago, Qüesta Julia Irene, Duque Paula
During seedling deetiolation, plants adjust their development to expose photosynthetic tissues to sunlight, enabling the transition from heterotrophic to autotrophic growth. While various plant hormones are known to influence this process, the role of abscisic acid (ABA) remains unclear. Here, we reveal that ABA plays a major role in controlling the dynamics of cotyledon aperture during seedling deetiolation. In the dark, ABA accumulates in the cotyledons to effectively repress their opening. However, light exposure reverses this effect, allowing the cotyledons to open. Our findings indicate that ABA-mediated regulation of cotyledon dynamics is accompanied by genome-wide rearrangements in both transcriptional and splicing patterns. We demonstrate that ABA-dependent adjustments of cotyledon and splicing dynamics in response to light depend on the positive role of two splicing factors, RS40 and RS41. Moreover, we identify transcriptional and posttranscriptional mechanisms that control the activity of these proteins. Altogether, this work sheds light on the interplay between light and ABA, highlighting cotyledon opening as a new developmental outcome, and identifying alternative splicing as the underlying layer of gene regulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。