Prostate cancer (PCa) diagnosis remains challenging due to overlapping clinical features with benign prostatic hyperplasia (BPH) and limitations of existing diagnostic tools like PSA tests, which yield high false-positive rates. This study investigates the potential of microRNA (miRNA) biomarkers, analyzed via reverse transcription polymerase chain reaction and machine learning (ML), to enhance diagnostic accuracy. miRNAs such as miR-21-5p, miR-141-3p, and miR-221-3p were identified as significant discriminators between PCa and BPH through a prospective cohort study. Whole blood miRNA profiling offered a robust systemic representation of disease states. A random forest ML model was trained on expression data, achieving notable performance metrics: an accuracy of 77.42%, AUC of 0.78 during verification, and 74.07% accuracy and 0.75 AUC in validation. The model's use of miRNA expression ratios, such as miR-141-3p/miR-221-3p, demonstrated superior sensitivity and specificity over traditional PSA testing. Bioinformatics analysis confirmed the association of selected miRNAs with cancer pathways, including PD-L1/PD-1 checkpoint and androgen receptor signaling, validating the biological relevance of the findings. This novel integration of miRNA profiling and machine learning holds great potential for the clinical translation of miRNA-based non-invasive diagnostics, enhancing diagnostic precision. However, broader population studies and standardization of protocols are needed to ensure scalability and clinical applicability. This research provides a foundational framework for advancing miRNA-based diagnostics, bridging discovery and clinical implementation.
Integrating miRNA profiling and machine learning for improved prostate cancer diagnosis.
整合 miRNA 分析和机器学习以改进前列腺癌诊断
阅读:8
作者:Singh Shweta, Pathak Abhay Kumar, Kural Sukhad, Kumar Lalit, Bhardwaj Madan Gopal, Yadav Mahima, Trivedi Sameer, Das Parimal, Gupta Manjari, Jain Garima
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 20; 15(1):30477 |
| doi: | 10.1038/s41598-025-99754-7 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
