The pleotropic nature of interleukin-2 (IL2) has allowed it to be used as both a pro-inflammatory and anti-inflammatory therapeutic agent, through promotion of regulatory T cell (Treg) responses via the trimeric IL2RABG receptor or promotion of CD8 T cell responses via the dimeric IL2RBG receptor, respectively. However, the utility of IL2 as a treatment is limited by this same pleiotropy, and protein engineering to bias specificity towards either Treg or CD8 T cell lineage often requires a trade-off in protein production or total bioactivity. Here we use SolubiS and dTANGO, computational algorithm-based methods, to predict mutations within the IL2 structure to improve protein production yield in muteins with altered cellular selectivity, to generate combined muteins with elevated therapeutic potential. The design and testing process identified the V106R (murine) / V91R (human) mutation as a Treg-enhancing mutein, creating a cation repulsion to inhibit primary binding to IL2RB, with a post-IL2RA confirmational shift enabling secondary IL2RB binding, and hence allowing the trimeric receptor complex to form. In human IL2, additional N90R T131R aggregation-protecting mutations could improve protein yield of the V91R mutation. The approach also generated novel CD8 T cell-promoting mutations. Y59K created a cation-cation repulsion with IL2RA, while Q30W enhanced CD8 T cell activity through potential Ï-stacking enhancing binding to IL2RB, with the combination highly stimulatory for CD8 T cells. For human IL2, Y45K (homolog to murine Y59K) coupled with E62K prevented IL2RA binding, however it required the aggregation-protecting mutations of N90R T131R to rescue production. These muteins, designed with both cellular specificity and protein production features, have potential as both biological tools and therapeutics.
Directed disruption of IL2 aggregation and receptor binding sites produces designer biologics with enhanced specificity and improved production capacity.
定向破坏 IL2 聚集和受体结合位点,可产生具有更高特异性和更强生产能力的定制生物制剂
阅读:7
作者:Dashwood Amy, Makuyana Ntombizodwa, van der Kant Rob, Ghodsinia Arman, Hernandez Alvaro R, Lienart Stephanie, Burton Oliver, Dooley James, Ali Magda, Kouser Lubna, Naranjo Francisco, Holt Matthew G, Rousseau Frederic, Schymkowitz Joost, Liston Adrian
| 期刊: | Computational and Structural Biotechnology Journal | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 Mar 4; 27:1112-1123 |
| doi: | 10.1016/j.csbj.2025.03.002 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
