Safflower-Derived Cationic Lipid Nanoparticles: Potential Impact on the Delivery of SARS-CoV-2 MRNA Transcripts.

红花衍生的阳离子脂质纳米颗粒:对SARS-CoV-2 mRNA转录物递送的潜在影响

阅读:5
作者:Shahsavandi S, Nasr Isfahani H, Hariri A A, Sharifnia Z, Soleimani S, Moradi A
The COVID-19 pandemic has significantly highlighted the successful application of lipid nanoparticles (LNPs) as an advanced platform for mRNA vaccine delivery. Ionizable lipid is the main component for complexing the mRNA in LNP formulation and in vivo delivery. In the first step of this study, we used the native safflower oil seed to prepare dilinoleyl alcohol. Then the cationic lipid DLin-MC3-DMA (MC3) was synthesized by mixing the alcohol with dimethylamino butyric acid. Safflower-derived MC3 was applied to formulate an LNP vector with standard composition. The efficiency of the synthetic cationic lipid was evaluated for delivering an mRNA-based vaccine encoding the receptor-binding domain (RBD) of SARS-CoV-2. The produced mRNA-LNP vaccine candidate was evaluated in size, morphology, mRNA encapsulation efficiency, apparent pKa, and stability for nucleic acid delivery. Cellular uptake was determined by measuring the percentage of GFP expression, and cytotoxicity was assayed using MTT. The MC3 formation was confirmed by the NMR spectra and used as a cationic lipid in LNP formulation. The obtained LNPs had positively charged and appropriate particle sizes (~80 nm) to confer proper encapsulation efficiency for mRNA delivery and stability. The LNPs were shown to be effective in the transfection of mRNA transcripts into HEK293T cells. A high level (72.34%) of cellular uptake was determined by measuring the percentage of GFP expression. The cytotoxicity assay using MTT showed that both LNP and mRNA-LNP were non-toxic to cells. These data demonstrate the potential of the proposed safflower-derived cationic lipid in the formulation of LNP. The carrier provides a promising platform for the efficient delivery of mRNA in vitro. Further evaluations of its potential for in vivo delivery are needed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。