Three-dimensional (3D) cell culture systems have emerged as powerful tools to model tumor biology ex vivo. However, the diverse array of 3D culture methods available presents challenges in selecting the most appropriate model for specific research questions. This study provides a comparative analysis of breast cancer cells (SUM149, IBC-3, MDA-MB-468) in the mammosphere culture (SphC) model or an "emboli" culture (EmC) model, which enrich for cancer stem cells and epithelial features, respectively. The EmC model, designed originally for inflammatory breast cancer, is characterized by media viscosity and mechanical rocking of the culture vessel. Notably, cells in EmC showed a distinct and durable reduction in cell proliferation while demonstrating increased capacity to establish experimental lung metastases. Ultrastructural quantitative analysis of electron microscopy images suggested that cells in EmC acquire nuclear and mitochondrial features that resemble those of tumor tissue. Proteomics, single-cell transcriptomics, and metabolic flux analyses showed that cells in EmC and SphC favor mitochondrial oxidative metabolism (OXPHOS) and glycolysis, respectively. EmC rendered cells hypersensitive to OXPHOS inhibition, yet more resistant to oxidative stress. Several genes associated with lung metastasis, including ID1, were specifically enriched in EmC. Given the emerging role of OXPHOS in cancer cell survival during dissemination and as established metastases, we propose that the EmC paradigm is a suitable ex vivo model to study signaling pathways relevant for tumor tissue and to assess drug sensitivities and resistance mechanisms of metastatic breast cancer cells ex vivo.
A simple liquid 3D cell culture paradigm models oxidative mitochondrial metabolism of epithelial breast cancer cells with relevance for lung metastases.
一种简单的液态 3D 细胞培养模型模拟了与肺转移相关的乳腺癌上皮细胞的氧化线粒体代谢
阅读:12
作者:Balamurugan Kuppusamy, Mikolaj Melissa R, Weiss Jonathan M, Holewinski Ronald, Xu Xia, Fan Yu, McKennett Lois, Dell Christopher W, Sharan Shikha, Donohue Duncan, Ratnayake Shashikala, Chen Qingrong, Meerzaman Daoud, Andresson Thorkel, McVicar Daniel W, Narayan Kedar, Sterneck Esta
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Aug 27 |
| doi: | 10.1101/2025.08.24.671623 | 研究方向: | 代谢、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
