Magnetic sculpture-like tumor cell vaccines enable targeted in situ immune activation and potent antitumor effects.

磁性雕塑状肿瘤细胞疫苗能够实现靶向原位免疫激活和强大的抗肿瘤效果

阅读:6
作者:Zhang Heng, Li Qing-Qing, Shi Yue, Zhang Lei, Wang Kai-Wen, Wu Ting, Cheng Shan-Bin, Zhang Zi-Ren, Qin Lu-Ning, Zhao Yun-Long, Zhen Xue-Ting, Ren Hao-Ran, Du Lin-Yong, Liu Hui-Juan, Sun Tao
Rationale: Tumor cells are ideal candidates for developing cancer vaccines due to their antigenic profiles, yet existing whole-cell vaccines lack efficacy. This study aimed to develop a novel whole-cell vaccine platform that combines immunogenicity, structural integrity, and tumor-targeting capabilities. Methods: We created "Magnetic Sculpture-like (MASK) Cells" by treating tumor cells with high-concentration FeCl(3), inducing rapid morphological fixation without traditional chemical crosslinking. MASK cells were characterized for proliferative capacity, biomolecule retention, and magnetic properties. Vaccine efficacy was tested in vitro, in melanoma-bearing mouse models, and through spatial transcriptomic profiling of tumor microenvironments. Combination therapy with anti-PD-1 was further evaluated. Results: MASK cells lose proliferative ability but retain biomolecules and architecture. MASK cells promote dendritic cell maturation and T cell responses against tumors. Vaccines combining MASK cells and adjuvant potently suppress melanoma growth. Uniquely, FeCl(3) sculpting imparts magnetism to cells, enabling directional navigation to tumors using magnetic fields and enhanced in situ immune activation. Spatial transcriptomics reveals DC and T cell activation and tumor cytotoxicity after MASK vaccination. Combined with anti-PD-1, MASK cell vaccines strongly inhibit growth and improve survival. Conclusion: MASK cells represent a promising new approach for targeted, patient-specific anti-tumor therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。