During early embryogenesis the zygotic genome remains transcriptionally silent and expression relies on maternally deposited products. Maternal deposition of histones is crucial to preserve chromatin integrity during early embryo development, when the number of nuclei exponentially increases in the absence of zygotic expression. In the Drosophila embryo, histones are maternally deposited as both proteins and mRNAs. Histone transcripts are the only nonpolyadenylated cellular mRNAs. They contain a highly conserved 3'UTR stem-loop structure, which is recognized by the Stem-Loop Binding Protein (SLBP) that, in conjunction with U7 snRNP, regulates their unique 3'-end processing. Here we report that, unexpectedly, maternal histone mRNAs are polyadenylated and have a truncated 3' stem-loop. This noncanonical 3'-end processing of maternal histone mRNAs occurs at their synthesis during oogenesis and requires SLBP, but not U7 snRNP. We show that maternal histone transcripts are subjected to cytoplasmic poly(A) tail elongation by Wisp, which results in their stabilization and is a requisite for translation. We also show that maternal histone transcripts remain largely quiescent and that their translation is activated upon loss of the embryonic linker histone dBigH1, which impairs chromatin assembly and induces DNA damage. Here, we discuss possible models to integrate these observations.
Maternal histone mRNAs are uniquely processed through polyadenylation in a Stem-Loop Binding Protein (SLBP)Â dependent manner.
母源组蛋白 mRNA 以茎环结合蛋白 (SLBP) 依赖的方式通过多聚腺苷酸化进行独特加工
阅读:7
作者:Pérez-Roldán Juan, Henn László, Bernués Jordi, Torras-LLort Mònica, Tamirisa Srividya, Belloc Eulà lia, RodrÃguez-Muñoz Laura, Timinszky Gyula, Jiménez Gerardo, Méndez Raúl, Carbonell Albert, AzorÃn Fernando
| 期刊: | Nucleic Acids Research | 影响因子: | 13.100 |
| 时间: | 2025 | 起止号: | 2025 Apr 10; 53(7):gkaf288 |
| doi: | 10.1093/nar/gkaf288 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
