Proliferative and viability effects of two cyanophages on freshwater bloom-forming species Microcystis aeruginosa and Raphidiopsis raciborskii vary between strains.

两种蓝藻噬菌体对淡水水华形成物种铜绿微囊藻和拉氏拉菲藻的增殖和存活率的影响因菌株而异

阅读:7
作者:Tokodi Nada, Łobodzińska Antonia, Klimczak Barbara, Antosiak Adam, Młynarska Sara, Å ulčius Sigitas, Avrani Sarit, Yoshida Takashi, Dziga Dariusz
Viruses that infect cyanobacteria are an integral part of aquatic food webs, influencing nutrient cycling and ecosystem health. However, the significance of virus host range, replication efficiency, and host compatibility on cyanobacterial dynamics, growth, and toxicity remains poorly understood. In this study, we examined the effects of cyanophage additions on the dynamics and activity of optimal, sub-optimal, and non-permissive cyanobacterial hosts in cultures of Microcystis aeruginosa and Raphidiopsis raciborskii. Our findings reveal that cross-infectivity can substantially reduce the proliferative success of the cyanophage under conditions of high-density of sub-optimal hosts which suggests phage dispersal limitation as a result of shared infections, in turn impairing their top-down control over the host community. Furthermore, we found that cyanophage addition triggers host strain-specific responses in photosynthetic performance, population size and toxin production, even among non-permissive hosts. These non-lytic effects suggest indirect impacts on co-existing cyanobacteria, increasing the overall complexity and variance in many ecologically relevant cyanobacterial traits. The high variability in responses observed with a limited subset of cyanophage-cyanobacteria combinations not only highlights the intricate role of viral infections in microbial ecosystems but also underscores the significant challenges in predicting the composition, toxicity, and dynamics of cyanobacterial blooms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。