Identification of the trail-following pheromone receptor in termites.

白蚁追踪信息素受体的鉴定

阅读:7
作者:Diallo Souleymane, KaÅ¡parová Kateřina, Å ulc Josef, Johny Jibin, Křivánek Jan, Nebesářová Jana, Sillam-Dussès David, Kyjaková Pavlína, Vondrášek Jiří, Machara AleÅ¡, LukÅ¡an Ondřej, Grosse-Wilde Ewald, Hanus Robert
Pheromone communication is the cornerstone of eusocial insect societies since it mediates the social hierarchy, division of labor, and concerted activities of colony members. The current knowledge on molecular mechanisms of social insect pheromone detection by odorant receptors (ORs) is limited to bees and ants, while no OR was yet functionally characterized in termites, the oldest eusocial insect clade. Here, we present the first OR deorphanization in termites. We selected four OR sequences from the annotated antennal transcriptome of the termite Prorhinotermes simplex (Psammotermitidae), expressed them in Empty Neuron Drosophila, and functionally characterized them using single sensillum recording (SSR). For one of the selected ORs, PsimOR14, we obtained strong responses to the main component of P. simplex trail-following pheromone, the monocyclic diterpene neocembrene. PsimOR14 showed a narrow tuning to neocembrene with only one additional compound out of 67 tested generating non-negligible responses. We report on homology-based modeling and molecular dynamics simulations of ligand binding by PsimOR14. Subsequently, we used SSR in P. simplex workers and identified the olfactory sensillum responding to neocembrene, thus likely expressing PsimOR14. Finally, we demonstrate that PsimOR14 is significantly more expressed in worker antennae compared to soldiers, which correlates with higher sensitivity of workers to neocembrene.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。