Anticancer activity of Stemona tuberosa (wild asparagus) against type-II human lung adenocarcinoma (A549) cells and identification of SRC inhibitor using integrated network pharmacology and molecular dynamic simulation.

阅读:2
作者:Lalmuansangi C, Lalfakawmi, Nghakliana Fanai, Sailo Hmingremhlua, Tochhawng Lalchhandami, Trivedi Amit Kumar, Kharat Kiran R, Vellingiri Balachandar, Kumar Nachimuthu Senthil, Siama Zothan
Stemona tuberosa is widely recognized for its traditional applications as an anti-cancer agent. This study aimed to assess the anti-cancer properties of S. tuberosa in human lung adenocarcinoma A549 cells. Among the various solvent extracts of S. tuberosa, the methanolic extract showed the highest toxicity against A549 cells. The S. tuberosa extract elicited cytotoxic effects and suppressed colony formation in A549 cells in a dose-dependent manner. S. tuberosa activity was further supported by AO/EtBr staining, increased caspase 3/6 activity, upregulation of pro-apoptotic genes, DNA damage, and elevated lipid peroxidation, with decreasing antioxidant levels. LC-MS analysis identified 80 predominant secondary metabolites in the methanolic extracts of S. tuberosa. A network pharmacology study identified SRC as the primary target of compounds identified from S. tuberosa. SRC protein is crucial for advancing lung cancer because of its function in cell proliferation, survival, and metastasis. Among the various compounds identified from S. tuberosa extract, 4-Azatricyclo [4.3.1.13,8] undecan-5-one (ADE) (- 10.88 kcal/mol) and Dihydro-normorphine, 3-desoxy- (DNY) (- 10.83 kcal/mol) exhibited notable binding affinities for SRC. Further analysis using molecular dynamics simulations (100 ns) validated the stability of SRC-ligand complexes, with RMSD of 1.8 and 2.2 à for ADE and DNY, respectively, alongside the establishment of essential hydrogen bonds with pivotal residues, including ASP408, ALA403, and THR438. Finally, gmx._MMPBSA showed favourable ΔGbind values for ADE (- 15.06 ± 0.11 kcal/mol) and DNY (- 15.66 ± 0.25 kcal/mol), which highlights the significant potential of ADE and DNY as effective SRC inhibitors, suggesting S. tuberosa as a novel candidate for cancer therapy.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。