Metabolic remodelling underpins macrophage effector functions in response to various stimuli, but the mechanisms involved are unclear. Here we report that viral-infection-induced inflammatory stimulation causes a rewiring of the urea cycle and the tricarboxylic acid cycle metabolism in macrophages to form a cyclic pathway called the aspartate-argininosuccinate (AAS) shunt. Using RNA sequencing, unbiased metabolomics and stable isotope tracing, we found that fumarate generated from the AAS shunt is driven by argininosuccinate synthase (ASS1) in the cytosol and potentiates inflammatory effects. Genetic ablation of ASS1 reduces intracellular fumarate levels and interferon-β production, and mitochondrial respiration is also suppressed. Notably, viral challenge or fumarate esters enhance interferon-β production via direct succination of the mitochondrial antiviral signalling protein and activation of the retinoic acid-inducible gene-I-like receptor signalling. In addition to the vesicular stomatitis virus, the Sendai virus and influenza A virus can also exert these effects. In addition, patients with Ebola virus disease have increased ASS1 expression and ASS1-deficient mice show suppressed macrophage interferon responses to vesicular stomatitis virus infection. These findings reveal that fumarate can be produced from the viral inflammation-induced AAS shunt and is essential for antiviral innate immunity.
Metabolic remodelling produces fumarate via the aspartate-argininosuccinate shunt in macrophages as an antiviral defence.
代谢重塑通过巨噬细胞中的天冬氨酸-精氨酸琥珀酸旁路产生富马酸,作为抗病毒防御机制
阅读:13
作者:Xia Wenjun, Mao Youxiang, Xia Ziyan, Cheng Jie, Jiang Peng
| 期刊: | Nature Microbiology | 影响因子: | 19.400 |
| 时间: | 2025 | 起止号: | 2025 May;10(5):1115-1129 |
| doi: | 10.1038/s41564-025-01985-x | 种属: | Viral |
| 研究方向: | 代谢、细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
