Astrocytes are key regulators of central nervous system (CNS) homeostasis, and their dysfunction is implicated in neurological and neurodegenerative disorders. Here, we describe a two-step protocol to generate astrocytes from human induced pluripotent stem cells (hiPSCs) using a bankable neural progenitor cell (NPC) intermediate, followed by low-density passaging and overexpression of the gliogenic transcription factor NFIA. A bankable NPC intermediate allows for facile differentiation into both purified neuronal and astrocyte cell types in parallel from the same genetic background, depending on the experimental needs. This article presents a protocol to generate NPCs from hiPSCs, which are then differentiated into hiPSC-derived astrocytes, termed iAstrocytes. The resulting iAstrocytes express key markers of astrocyte identity at transcript and protein levels by bulk RNA-Seq and immunocytochemistry, respectively. Additionally, they respond to the inflammatory stimuli poly(I:C) and generate waves of calcium activity in response to either physical activity or the addition of ATP. Our approach offers a simple and robust method to generate and characterize human astrocytes, which can be used to model human disease affecting this cell type. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Differentiation of hiPSCs to NPCs Basic Protocol 2: Differentiation of NPCs into iAstrocytes Support Protocol 1: Molecular validation of iAstrocytes Support Protocol 2: Calcium imaging-based validation of iAstrocyte function Support Protocol 3: Differentiation of NPCs into neurons.
Generating iAstrocytes From Human Induced Pluripotent Stem Cells by Combining Low-Density Passaging of Neural Progenitor Cells and Transcription Factor NFIA Transdifferentiation.
通过低密度传代神经祖细胞和转录因子NFIA转分化,从人类诱导多能干细胞生成i星形胶质细胞
阅读:12
作者:Bosco Patrick, Akcan Ugur, Williams Damian, Buchanan Heather M, Agalliu Dritan, Sproul Andrew A
| 期刊: | Current Protocols | 影响因子: | 2.200 |
| 时间: | 2024 | 起止号: | 2024 Nov;4(11):e70049 |
| doi: | 10.1002/cpz1.70049 | 种属: | Human |
| 研究方向: | 发育与干细胞、神经科学、细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
