Pulsed cavitation ultrasound assisted delivery of cardamom, pistacia and laurel encapsulated micelles nanoparticles for sono-photodynamic lymphoma in vitro and in vivo treatment.

阅读:2
作者:Abd El-Kaream Samir Ali, Hamoda Safia Ali Hussein, El Kholey Sohier Mahmoud, El-Sharkawy Awatef Mohamed
Sono-photodynamic therapy (SPDT) has attracted a lot of interest as a cutting-edge therapeutic strategy in the field of cancer treatment. The essential part of SPDT is the sensitizer, which under laser photon and pulsed cavitation ultrasound sono-irradiation may transform sono and photo- energy into cytotoxic molecules. Photon absorption, targeting, penetration, and oxygen dependence remain challenges in sono- -photosensitizer (SPs) design. Rapid advancements in material science have prompted the creation of several SPs that create cytotoxic species with great selectivity, safety, and noninvasiveness for the treatment of tumors. The current study aims to provide an advanced method of activated cancer treatment by using pulsed cavitation to assist the delivery of cardamom, pistacia and laurel conjugated micelles nanoparticles (CPL-Micelle NP) for the sono-photodynamic lymphoma in vivo and in vitro treatment. Human lymphoma cells (U-937) were used in the in vitro study, and the in vivo application groups of the study protocol were Swiss albino mice treated with 9,10-Dimethyl-1,2-Benzanthracene (DMBA) only; they were not given any treatment to induce lymphoma. The study treatment protocol started only after lymphoma induction, and involved daily administration of CPL-Micelle NP as SPDT sensitizer whether or not to be exposed to photo- (IRL) or sono- (US) or a combination of them for three minutes for a period of two weeks. Indicated that Micelle NP is a useful CPL delivery mechanism that targets lymphoma cells directly. Furthermore, CPL-Micelle NP is a promising SPS that, when used in conjunction with SPDT, can be very effective in in vitro treating lymphoma-U-937 (in a dose-dependent manner cell viability declined, an increase in the cells population during the S and G2/M phases indicates that the cell cycle was arrested, and an increase in cell population in the Pre-G, autophagic cell death, as well as necrosis and early and late apoptosis, indicate that cell death was induced) and DMBA-Lymphoma-induced mice in vivo (induced antiproliferative genes, repressed antiangiogenic and antiapoptotic genes), successfully slowing the growth of tumors and even killing cancer cells, as well as lowering oxidative stress malondialdehyde (MDA), improving the functions of the kidneys, liver, and enzymatic and non enzymatic antioxidants. SPDT, the photo- or sono- chemical CPL activation mechanism, and the antioxidant capacity of non-activated CPL can all be linked to this process. On the bases of the findings, CPL-Micelle NP shows a great promise as a novel, efficient selective delivery system for localized SPDT-activated lymphoma treatment.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。