Identification and construction of a novel NET-related gene signature for predicting prognosis in multiple myeloma.

鉴定和构建新型NET相关基因特征,用于预测多发性骨髓瘤的预后

阅读:9
作者:Yan Haotian, Ding Yangyang, Dai Wenjie, Wang Huiping, Qin Hui, Zhai Zhimin, Tao Qianshan
Neutrophil extracellular traps are essential in the development and advancement of multiple myeloma (MM). However, research investigating the prognostic value with NET-related genes (NRGs) in MM has been limited. Patient transcriptomic and clinical information was sourced from the gene expression omnibus database. Cox regression analysis with a univariate approach was employed to explore the link between NRGs and overall survival (OS). Kaplan-Meier methods were applied to assess variations in survival rates. A nomogram integrating clinical data and predictive risk metrics was crafted using multivariate logistic and Cox proportional risk model regression analyses. Additionally, we investigated the disparities in biological pathways, drug sensitivity, and immune cell involvement, and validated differential levels of two key genes through qPCR. We identified 148 differentially expressed NRGs through published articles, of which 14 were associated with prognosis in MM. Least absolute shrinkage and selection operator Cox regression model established a nine-gene NRG signature-comprising ANXA1, ANXA2, ENO1, HIF1A, HSPE1, LYZ, MCOLN3, THBD, and FN1-that demonstrated strong predictive power for patient survival. The Cox regression model with multiple variables demonstrated that the risk score independently predicted OS, showing that those with a high score had worse survival rates. Furthermore, a nomogram incorporating patient age, LDH levels, the International Staging System, and NRGs was developed, demonstrating strong prognostic prediction capabilities. Drug sensitivity correlation analysis also offered valuable guidance for future immuno-oncological therapies and drug selection in MM patients. The NRGs signature was a reliable biomarker for MM, effectively identifying high-risk patients and forecasting clinical outcomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。