Inhibition of histone deacetylases 3 attenuates imiquimod-induced psoriatic dermatitis via targeting cGAS-STING signaling in keratinocytes.

抑制组蛋白去乙酰化酶 3 可通过靶向角质形成细胞中的 cGAS-STING 信号传导来减轻咪喹莫特诱发的银屑病皮炎

阅读:7
作者:Zeng Chong, Wen Xiujuan, Wei Zibo, Dong Xinhuai
BACKGROUND: Psoriasis is a common chronic inflammatory skin disease characterized by epidermal keratinocyte hyperproliferation and persistent immune activation. Histone deacetylase 3 (HDAC3), a member of the class I HDAC family, plays critical roles in regulating immunity and inflammation. However, its precise expression profile and functional contribution to psoriasis pathogenesis remain poorly defined. METHODS: We first performed bioinformatics analysis of HDAC3 expression using the Gene Expression Omnibus (GEO) database. Subsequently, we employed a combination of cellular and molecular techniques, including hematoxylin and eosin (H&E) staining, immunohistochemistry, flow cytometry, quantitative real-time PCR (qRT-PCR), western blotting, and transmission electron microscopy (TEM), to analyze the role of HDAC3 in IMQ-induced psoriasis-like inflammation in mice and in vitro psoriasis models. RESULTS: HDAC3 expression was significantly upregulated in psoriasis lesions of patients and in both in vitro and in vivo models of psoriasis. Pharmacological inhibition of HDAC3 using the specific inhibitor RGFP966 alleviated IMQ-induced skin inflammation in mice and suppressed psoriasis-like phenotypes in vitro. Mechanistically, HDAC3 upregulation in an inflammatory microenvironment promoted oxidative stress, disrupted mitochondrial structural integrity, and triggered mitochondrial DNA leakage into the cytosol, thereby activating the cGAS-STING pathway in keratinocytes. CONCLUSION: Our findings establish HDAC3 as a pivotal mediator of psoriasis pathogenesis through the cGAS-STING pathway via mitochondrial dysfunction. The role of HDAC3 in exacerbating epidermal hyperproliferation and inflammation highlights its potential as a therapeutic target. Targeting HDAC3 in keratinocytes may offer a novel strategy for preventing and treating psoriasis by modulating epigenetic regulation, mitochondrial homeostasis, and innate immune responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。