We aimed to evaluate the therapeutic potential of crizotinib, a broad-spectrum tyrosine kinase inhibitor against bladder cancer (BC) cells, based on a three-dimensional (3D) cell culture system. After proliferating cell masses (spheroids) using T24 cisplatin-naïve and T24R2 cisplatin-resistant human BC cell lines, the spheroids were exposed to various crizotinib concentrations in order to derive an ideal crizotinib concentration to suppress cell survival, migration, and invasion. Crizotinib suppressed cell proliferation, migration, and invasion in both T24 and T24R2 BC cell lines under a 3D spheroid model, which was more appropriate than the conventional two-dimensional cell culture model. Real-time quantitative polymerase chain reaction analysis revealed a reduced expression of E-cadherin and an enhanced expression of vimentin, suggesting EMT suppression and the subsequent suppression of tumor aggressiveness following crizotinib administration. Meanwhile, the expressions of apoptosis-related genes increased. Western blot analysis revealed that the expression levels of phosphorylated mesenchymal-epithelial transition factor (c-Met) and phosphorylated Akt decreased following crizotinib administration, suggesting that the antitumor effect of crizotinib can be associated with the inhibition of the phosphorylated activation of the c-Met/PI3K/Akt pathway. Crizotinib showed a potential antitumor effect on both cisplatin-naïve and cisplatin-resistant human BC cells, likely through c-Met-induced PI3K/Akt pathway inhibition.
Crizotinib Inhibits Viability, Migration, and Invasion by Suppressing the c-Met/PI3K/Akt Pathway in the Three-Dimensional Bladder Cancer Spheroid Model.
克唑替尼通过抑制三维膀胱癌球体模型中的 c-Met/PI3K/Akt 通路来抑制细胞活力、迁移和侵袭
阅读:5
作者:Song Byeongdo, Kim Danhyo, Ho Jin-Nyoung, Le Van-Hung, Lee Sangchul
| 期刊: | Current Oncology | 影响因子: | 3.400 |
| 时间: | 2025 | 起止号: | 2025 Apr 17; 32(4):236 |
| doi: | 10.3390/curroncol32040236 | 研究方向: | 细胞生物学 |
| 信号通路: | PI3K/Akt | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
