BACKGROUND: Intracerebral hemorrhage (ICH) is a severe neurological disorder characterized by bleeding within the brain tissue, typically associated with factors such as hypertension, cerebrovascular disease, and trauma. The transplantation of human umbilical cord-derived mesenchymal stem cells (hUCMSCs) has demonstrated promising effects in restoring neurological function in ICH rats; however, limited retention of these cells significantly impedes their efficacy. To address this limitation, we developed a bioink composed of decellularized extracellular matrix (dECM) and hUCMSCs, which was synthesized into 3D cell-laden scaffold through 3D bioprinting. This approach aims to extend the retention of hUCMSCs and create an early vascular microenvironment, thereby partially compensating for the drawbacks of hUCMSC transplantation and improving neurological function in ICH rats. METHODS: This study aimed to explore the use of a bioink formed by mixing 15% gelatin and 3% sodium alginate with a dECM solution, in conjunction with hUCMSCs, for 3D bioprinting of 3D cell-laden scaffold. The viscosity, morphology, and biocompatibility of the bioink were characterized using rheological analysis, scanning electron microscopy (SEM), and hematoxylin and eosin (HE) staining. Following printing, a live/dead assay kit was employed to assess the viability of hUCMSCs within the 3D cell-laden scaffold. ICH model rats were randomly assigned to four groups: (1) SHAM group; (2) ICH group; (3) ICHâ+â3D biological scaffold group; and (4) ICHâ+â3D cell-laden scaffold group. RESULTS: hUCMSCs exhibited a higher retention rate within the 3D bioprinted 3D cell-laden scaffold. HE staining, immunohistochemistry, and immunofluorescence results indicated that the 3D biological scaffold encapsulating hUCMSCs had a significant impact on the vascularization of the printed 3D cell-laden scaffold. Furthermore, 3D cell-laden scaffold improved nerve function and promoted angiogenesis in rats with cerebral hemorrhage better than 3D biological scaffolds. CONCLUSION: Our results suggest that 3D bioprinted 3D cell-laden scaffold hold great potential for restoring impaired neurological function in ICH rats. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12951-025-03644-z.
3D cell-laden scaffold printed with brain acellular matrix bioink.
阅读:2
作者:Zhang Aobo, Zhu Siyu, Sun Boyu, Nan Chengrui, Cong Lulu, Zhao Zongmao, Liu Liqiang
期刊: | Journal of Nanobiotechnology | 影响因子: | 12.600 |
时间: | 2025 | 起止号: | 2025 Aug 13; 23(1):564 |
doi: | 10.1186/s12951-025-03644-z |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。