Aluminum-Free Borosilicate Glass Functionalized Hydrogels for Enhanced Dental Tissue Regeneration.

用于增强牙组织再生的无铝硼硅酸盐玻璃功能化水凝胶

阅读:6
作者:Attik Nina, Basri Inès, Sohier Jérôme, Gauthier Rémy, Villat Cyril, Goutaudier Christelle
Hydrogels are promising scaffolds for tissue regeneration, and borosilicate glass particles have demonstrated potential in enhancing the biological behaviour of dental pulp cells. However, the specific morphological characteristics of dental lesions and the diverse requirements of dental tissues require biocompatible, bioactive, and shapeable scaffolds. This study aimed to evaluate the in vitro biological behaviour of human gingival fibroblasts (HGFs) in contact with an experimental aluminum-free borosilicate glass-functionalized hydrogel. Two types of experimental borosilicate glass particles were utilized, with Biodentine(®) particles serving as a reference material. The hydrogel, based on poly(L-lysine) dendrimers (DGL) with or without borosilicate particles, was analyzed using micro-computed tomography (µCT) and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX). Cytocompatibility was assessed using Live/Dead™ staining, and cell colonization was evaluated via confocal imaging. Additionally, Alizarin red staining was performed to assess mineralization potential after 7 and 14 days. Results indicated that the incorporation of borosilicate particles did not alter hydrogel porosity, while EDX confirmed particle presence on the hydrogel surfaces. Furthermore, the borosilicate-functionalized hydrogels significantly enhanced cell proliferation, colonization, and the content of calcium deposits. These findings highlight the potential of these hydrogels for future clinical applications in dental tissue regeneration, pending further development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。