Protective Effect of the LRRK2 Kinase Inhibition in Human Fibroblasts Bearing the Genetic Variant GBA1 K198E: Implications for Parkinson's Disease.

LRRK2激酶抑制剂对携带GBA1 K198E基因变异的人类成纤维细胞的保护作用:对帕金森病的启示

阅读:7
作者:Perez-Abshana Laura Patricia, Mendivil-Perez Miguel, Velez-Pardo Carlos, Jimenez-Del-Rio Marlene
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder for which there are currently no curative therapies. Therefore, the need for innovative treatments for this illness is critical. The glucosylceramidase beta 1 (GBA1) and leucine-rich repeated kinase 2 (LRRK2) genes have been postulated as potential genetically defined drug targets. We report for the first time that the LRRK2 inhibitor PF-06447475 (PF-475) not only restores GCase enzyme activity, but also increases mitochondrial membrane potential, significantly decreases DJ-1 Cys106-SO(3), reduces lysosome accumulation, and diminishes cleaved caspase-3 (CC3) in GBA1 K198E fibroblasts. Furthermore, in addition to a significant reduction in p-Ser935 LRRK2 kinase, we found that PF-475 reduced p-Thr73 RAB 10 and p-Ser129 α-Syn in mutant skin fibroblasts. In addition, we found that the GCase activator GCA (NCGC00188758) increased GCase activity and decreased lysosomal accumulation, but did not affect p-Ser935 LRRK2, ∆Ψm, p-Ser129 α-Syn, DJ-1 Cys106-SO(3), or CC3 in K198E GBA1 fibroblasts. The GCase inhibitor conduritol-β-epoxide (CBE), used as an internal control, significantly reduced GCase and left the other pathological markers largely unaltered in GBA1 K198E, but reduced GCase and increased the accumulation of lysosomes only in WT GBA1 fibroblasts. Taken together, these results suggest that LRRK2 is a critical signaling kinase in the pathogenic mechanism associated with the lysosomal GBA1/GCase K198E variant. Our findings suggest that the use of LRRK2 inhibitors in PD patients with GBA1 mutations, such as K198E, may be effective in reversing GBA1/GCase deficiency, autophagy impairment, oxidative stress, and neuronal death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。