The quality and quantity of the ovarian reserve are meticulously regulated through various cell death pathways to guarantee the availability of high-quality oocytes for fertilization. While apoptosis is recognized for contributing to maintaining ovarian reserve, the involvement of other cell death pathways remains unclear. Employing chemical genetics and proteomics, this study reveals the crucial involvement of Cathepsin B in maintaining the ovarian reserve. Results indicate that apoptosis and autophagy play pivotal roles, and inhibiting these pathways significantly increases follicle numbers. Proteomics reveals a dynamic shift from apoptosis to autophagy during follicular development, with Cathepsin B emerging as a key player in this transition. Inhibiting Cathepsin B not only mimics the augmented oocyte reserve observed with autophagy inhibition but also upregulated IGF1R and AKT-mTOR pathways without compromising fertility in pre- and postpubertal mice. Further, IGF1R inhibition partially compromised the protective effects of Cathepsin B inhibition on oocyte reserves, suggesting their interdependence. This association is further supported by the finding that Cathepsin B can degrade IGF1R in vitro. Moreover, the increased IGF1R levels enhance the oocyte mitochondrial membrane potential via transcriptional regulation of mitochondrial biogenesis and mitophagy genes. Remarkably, this Cathepsin B-dependent ovarian reserve maintenance mechanism is conserved in higher-order vertebrates. Cumulatively, our study sheds valuable light on the intricate interplay of autophagy, Cathepsin B, and growth factors in ovarian reserve maintenance, offering potential therapeutic strategies to delay ovarian aging and preserve fertility.
Cathepsin B Regulates Ovarian Reserve Quality and Quantity via Mitophagy by Modulating IGF1R Turnover.
组织蛋白酶 B 通过线粒体自噬调节 IGF1R 的周转,从而调节卵巢储备的质量和数量
阅读:5
作者:Mohanty Aradhana, Kumari Anjali, Kumar S Lava, Kumar Ajith, Birajdar Pravin, Beniwal Rohit, Athar Mohd, Kumar P Kiran, Rao H B D Prasada
| 期刊: | Aging Cell | 影响因子: | 7.100 |
| 时间: | 2025 | 起止号: | 2025 Jul;24(7):e70066 |
| doi: | 10.1111/acel.70066 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
