Salmonella Typhi serine threonine kinase T4519 induces lysosomal membrane permeabilization by manipulating Toll-like receptor 2-Cystatin B-Cathepsin B-NF-κB-reactive oxygen species pathway and promotes survival within human macrophages.

阅读:3
作者:Chakraborty Swarnali, Ganguli Debayan, Nagaraja Theeya, Gope Animesh, Dey Sudip, Pal Ananda, Mandal Rahul Shubhra, Das Sudipta Sekhar, Das Santasabuj
Intracellular pathogens of Salmonella spp. survive and replicate within the phagosomes, called Salmonella-containing vacuoles (SCVs) inside macrophages by manipulating phagosomal maturation and phagolysosome formation. While controversies exist about the phagosomal traffic of Salmonella Typhimurium, little studies were carried out with the intracellular survival mechanisms of Salmonella Typhi (S. Typhi). We had previously reported that a eukaryote-like serine/threonine kinase of S. Typhi (T4519) contributes to survival within macrophages and activates host pro-inflammatory signaling pathways regulated by NF-κB. However, neither the mechanisms underlying NF-κB activation nor how it contributes to intracellular survival of S. Typhi were studied. Here we show, by using antibody-mediated blocking and gene knockdown studies that T4519 activates Toll-like receptor 2 (TLR2) signals in the human monocyte-derived macrophages. We computationally predicted the NH2-terminal glycine rich repeat domain of T4519 as the TLR2-binding moiety and confirmed the interaction by co-immunoprecipitation experiment. TLR2-T4519 interaction transcriptionally repressed cystatin B, a cathepsin B inhibitor, leading to the activation of cytosolic cathepsin B, leaked from the lysosomes of the infected cells. Through a series of RT-qPCR, western blotting, gene knockdown, flow cytometry and confocal microscopy experiments, we have shown that active cytosolic cathepsin B cleaves IKB-α, resulting in nuclear translocation of NF-κB and transactivation of its target genes, including reactive oxygen species (ROS), which in turn induces lysosomal membrane permeabilization (LMP). TLR2-dependent targeting of the cystatin B-cathepsin B-NF-κB-ROS pathways by T4519, leading to LMP promotes phagosomal survival of S. Typhi. This study describes a unique mechanism of the exploitation of host NF-κB signaling pathways by bacterial pathogens to promote its own persistence within macrophage cells.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。