BACKGROUND: Due to the poor prognosis of patients suffering malignant brain tumors such as glioblastoma multiforme (GBM), the search for new therapeutic strategies with more efficacy and higher survival rate is of utmost urgency. Growing evidence suggests that alterations in autophagy and metabolism critically contribute to the pathogenesis and progression of GBM. In this context, microRNAs are known to regulate autophagy and associated cellular functions, which point them as promising therapeutic candidates. We previously established the role of miR-7 in regulating relevant metabolic pathways related to insulin signaling and cholesterol homeostasis. METHODS: Bioinformatics analysis was performed to identify miR-7 target genes potentially involved in the regulation of metabolism and cellular processes related to GBM. Ectopic expression of miR-7 was assessed to investigate its role in macroautophagy and energy metabolism. In vivo, miR-7 levels were restored in a mouse GBM xenograft model to evaluate its potential therapeutic effect in already established tumors. Additional mechanistic approaches, including transcriptomics, bioinformatics, and histopathological analyses, indicate that miR-7 modifies the tumor phenotype by altering key genes involved in extracellular matrix (ECM) remodeling in vivo. RESULTS: Herein, we unveiled new conceptual and functional pathophysiological avenues in GBM, with potential therapeutic implications, by demonstrating a novel dual role of miR-7 on the regulation of metabolism, through the impairment of the mitochondrial function and glycolysis, and autophagy, by inducing the initiation process through the regulation of PI3K/AKT/mTORC1 signaling, while blocking later stages via posttranscriptional inhibition of two key SNARE proteins, STX17 and SNAP29. Furthermore, in vivo studies using a preclinical model showed that miR-7 overexpression in already established GBM tumors promotes a significant inhibition of tumor size and progression and replicates the metabolic defects found in vitro. Moreover, our novel findings indicate that miR-7 modifies the tumor phenotype by promoting alterations in its mechanism of extracellular matrix remodeling in vivo. CONCLUSION: Altogether, our study provides solid, convincing evidence demonstrating that miR-7 might be used as a promising therapeutic target for GBM, paving the way to explore its potential as novel biomarker and actionable target candidate for this lethal cancer.
MiR-7 inhibits progression of glioblastoma by impairing autophagy resolution, energy metabolism and ECM remodeling.
阅读:3
作者:Torrecilla-Parra Marta, Pardo-Marqués Virginia, Fuentes-Fayos Antonio C, G-GarcÃa Miguel E, Fernández-de Frutos Mario, López-Aceituno José L, Puigdueta Cristina, Zamora Carmen, Pérez-GarcÃa Ana, Aranda Juan F, Busto Rebeca, Gahete Manuel D, Luque Raúl M, RamÃrez Cristina M
期刊: | Journal of Experimental & Clinical Cancer Research | 影响因子: | 12.800 |
时间: | 2025 | 起止号: | 2025 Aug 14; 44(1):237 |
doi: | 10.1186/s13046-025-03504-6 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。