Design of diverse, functional mitochondrial targeting sequences across eukaryotic organisms using variational autoencoder.

利用变分自编码器设计真核生物中多样化、功能性的线粒体靶向序列

阅读:4
作者:Boob Aashutosh Girish, Tan Shih-I, Zaidi Airah, Singh Nilmani, Xue Xueyi, Zhou Shuaizhen, Martin Teresa A, Chen Li-Qing, Zhao Huimin
Mitochondria play a key role in energy production and metabolism, making them a promising target for metabolic engineering and disease treatment. However, despite the known influence of passenger proteins on localization efficiency, only a few protein-localization tags have been characterized for mitochondrial targeting. To address this limitation, we leverage a Variational Autoencoder to design novel mitochondrial targeting sequences. In silico analysis reveals that a high fraction of the generated peptides (90.14%) are functional and possess features important for mitochondrial targeting. We characterize artificial peptides in four eukaryotic organisms and, as a proof-of-concept, demonstrate their utility in increasing 3-hydroxypropionic acid titers through pathway compartmentalization and improving 5-aminolevulinate synthase delivery by 1.62-fold and 4.76-fold, respectively. Moreover, we employ latent space interpolation to shed light on the evolutionary origins of dual-targeting sequences. Overall, our work demonstrates the potential of generative artificial intelligence for both fundamental research and practical applications in mitochondrial biology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。