p53 Protein Stability Plays a Crucial Role in NaB-Mediated Apoptosis in Colorectal Cancer Cells.

p53 蛋白稳定性在 NaB 介导的结直肠癌细胞凋亡中起着至关重要的作用

阅读:9
作者:Lee Jeong Yeon, Kim Hyunju
Colorectal cancer (CRC) is associated with factors such as an unhealthy diet, physical inactivity, obesity, diabetes, and chronic inflammatory conditions like inflammatory bowel disease (IBD), as well as TP53 mutations, which are observed in a broad spectrum of CRC. Additionally, alteration in the composition of the gut microbiome community and metabolism plays a significant role in the development of colorectal cancer and its therapeutic effects. It is well known that treatment with sodium butyrate (NaB), an intestinal microbial metabolite, can induce apoptosis by activating histone deacetylase (HDAC) in cancer cells. Therefore, this study examined the relationship between NaB-induced apoptosis and p53 protein level in colorectal cancer cells. Treatment with NaB triggered cell death in the HCT116 cell line. Furthermore, a notable elevation in p53 protein level was detected following treatment with a high concentration of NaB, compared to both the control group and the low concentration NaB. Furthermore, apoptotic cell death was diminished in a p53-deficient cell line (HCT 116 p53(-/-)) and p53 protein expression was more stabilized. Although p53 mRNA expression was not affected, acetylation of p53 protein was clearly observed by high concentration NaB treatment. To demonstrate the relationship between p53 acetylation and cell death, HT29 cells were treated with a high concentration of NaB. In HT29 cells with a mutation in the p53 gene, increased cell viability, overproduction p53 protein, and hyperacetylation of p53 were observed compared to the control. The results of this study suggest that p53 protein expression plays an important role in the effectiveness of therapy utilizing gut microbiota metabolites.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。