Modulating mitochondrial dynamics in CMT2A: a multifaceted platform for drug discovery and evaluation.

调节 CMT2A 中的线粒体动力学:药物发现和评估的多方面平台

阅读:11
作者:Liu Yang, Yan Chen, Cao Borui, Kong Dejun, Li Jiaqi, Li Wenlei, Guo Yingjie, Yuan Zhongyang, Gao Yumiao, Zhang Yubo, Sui Ran, Chen Guo, Hao Xiaojiang, Chen Quan
Mitochondrial dynamics, encompassing fusion and fission processes, plays a crucial role in regulating mitochondrial distribution, motility, and material exchange within cells, particularly in the nervous system. Mitofusin-2 (MFN2), a GTPase localized to the outer mitochondrial membrane, mediates mitochondrial fusion through dimerization and conformational changes. Mutations in MFN2 are causal for Charcot-Marie-Tooth disease type 2A (CMT2A), an inherited peripheral neuropathy for which no curative treatment currently exists. Herein, we have developed a comprehensive mitochondrial drug-screening and evaluation platform to facilitate the identification of potential therapeutic candidates. This work builds upon our previous research with S89, a small molecule agonist derived from spiramine alkaloids that promotes mitochondrial fusion by interacting with endogenous MFN1 and effectively mitigates axonal degeneration in CMT2A patient-derived motor neurons. This platform integrates three sequential stages of assessment: (1) initial screening in Mfn knockout mouse embryonic fibroblasts (MEFs) to identify compounds capable of reversibly rescuing mitochondrial fragmentation; (2) evaluation in primary neuronal cultures derived from CMT2A mouse dorsal root ganglia and cortex to assess the compounds' efficacy in restoring mitochondrial morphology, axonal transport, and neurite outgrowth; and (3) final assessment in CMT2A patient-derived induced pluripotent stem cell (iPSC)-differentiated motor neurons to determine the candidates' therapeutic potential in human peripheral nervous system cells. This multi-tiered approach facilitates rapid compound screening with increasing physiological relevance, enhancing the efficiency and translational potential of identifying therapeutic candidates for CMT2A.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。