Stage-dependent changes in culture medium osmolality promote porcine oocyte maturation in vitro.

培养基渗透压随发育阶段的变化促进猪卵母细胞在体外成熟

阅读:8
作者:Liu Lixiang, Tang Yu, Shao Jing, Fan Bingfeng, Yang Yifeng, Zhang Ying, Zhao Xiangyuan, Xue Hailong, Sun Huimin, Zhang Xulin, Zhang Yushi, Xu Baozeng
INTRODUCTION: Early preimplantation embryos of mammals exhibit pronounced sensitivity to hyperosmotic conditions, which results in an embryonic developmental block. The reduction of medium osmolarity or the supplementation with organic osmolytes can eliminate this arrest. Therefore, cell volume homeostasis is essential for embryonic development in vitro. Oocytes become capable of independent volume regulation after detaching from the follicle microenvironment. Whether the efficiency and quality of oocyte maturation can be improved by optimizing cell volume regulation by adjusting the osmolality of the culture medium in the presence of the organic osmolyte of glycine remains to be determined. METHODS: The IVM of porcine oocytes was divided into two stages, i.e. the first 22 h as the first stage, and the last 22 h as the second stage. In the presence of 1 mM glycine, we adjusted the osmolality of the culture medium from low to high (290 mOsM for the first 22 h and 320 mOsM thereafter) by adding raffinose, which cannot be used by animal cells, in a culture stage-dependent manner. RESULTS: Stage-dependent adjustment of simplified medium PZM-3 osmolarity (290 mOsM for the first 22 h and 320 mOsM thereafter) in the presence of 1 mM glycine significantly improved the quality of porcine oocyte maturation in vitro, manifested by the oocyte maturation rate, functional mitochondrial distribution and activity, the transcript levels of glycolysis genes in granulosa cells, and subsequent embryonic developmental ability and ROS levels. CONCLUSION: Our study demonstrates that optimizing cell volume regulation can further enhance the developmental potential of oocytes cultured in vitro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。