Rapid, ultrasensitive, and specific RPA-THz system for pathogenic microorganism detection.

阅读:3
作者:Fu Xupeng, Huang Lintao, Chen Ying, Pi Menglu, Ma Lin, Cai Hu, Wang Xuehao, Chen Zhihao, Shi Hang, Yang Wenhui, Zhang Fulai, Zhang Yang, Jiang Huili, Zhou Zeming, Wang Changhe, Huang Rong, Zhang Juan, Cheng Donghao, Wu Li-An, Qian Airong, Tian Ye
Pathogenic microorganisms responsible for infectious diseases pose a significant global threat to human health. Existing detection methods, such as qPCR and ELISA, fail to simultaneously meet the requirements for high sensitivity, high specificity, and rapid detection. This study presents an innovative approach for the rapid, specific, and highly sensitive detection of pathogenic microorganisms, particularly Escherichia coli O157:H7 (E. coli O157:H7) and varicella-zoster virus (VZV), by combining recombinase polymerase amplification (RPA) with terahertz time-domain spectroscopy (THz-TDS). The qualitative and quantitative detection method for pathogenic microorganisms was developed and evaluated. The stable and efficient RPA reaction systems were established to specifically amplify the key conserved genes of these pathogens. Then the RPA products were purified, and enriched with MBs. The absorbance spectra were obtained using THz-TDS technology. The linear range of the RPA-THz for detecting E. coli O157:H7 was 0.55 to 5.5 × 10(4) pg/mL, while for VZV, it was 0.75 to 7.5 × 10(3) pg/mL. The limit of detection (LOD) for bacteria and viruses was 0.226 pg/mL and 0.528 pg/mL, respectively, demonstrating better sensitivity than the qPCR (550 pg/mL and 750 pg/mL, respectively). In addition, the whole amplification and detection process was completed in about 35 minutes. Compared to traditional pathogen detection techniques, the primary advantage of the developed RPA-THz method exhibited high accuracy, good reproducibility, and short detection times, enabling non-ionizing, label-free analysis for rapid detection with high sensitivity and specificity of pathogenic microorganisms. This study provides a theoretical foundation and practical demonstration for the fast and precise detection of pathogenic microorganisms. It establishes a crucial research basis for further development of RPA-THz sensors, advancing technological progress in the field of food safety, medical diagnostics, environmental monitoring, and public health.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。