Rapid, ultrasensitive, and specific RPA-THz system for pathogenic microorganism detection.

用于病原微生物检测的快速、超灵敏、特异性RPA-THz系统

阅读:12
作者:Fu Xupeng, Huang Lintao, Chen Ying, Pi Menglu, Ma Lin, Cai Hu, Wang Xuehao, Chen Zhihao, Shi Hang, Yang Wenhui, Zhang Fulai, Zhang Yang, Jiang Huili, Zhou Zeming, Wang Changhe, Huang Rong, Zhang Juan, Cheng Donghao, Wu Li-An, Qian Airong, Tian Ye
Pathogenic microorganisms responsible for infectious diseases pose a significant global threat to human health. Existing detection methods, such as qPCR and ELISA, fail to simultaneously meet the requirements for high sensitivity, high specificity, and rapid detection. This study presents an innovative approach for the rapid, specific, and highly sensitive detection of pathogenic microorganisms, particularly Escherichia coli O157:H7 (E. coli O157:H7) and varicella-zoster virus (VZV), by combining recombinase polymerase amplification (RPA) with terahertz time-domain spectroscopy (THz-TDS). The qualitative and quantitative detection method for pathogenic microorganisms was developed and evaluated. The stable and efficient RPA reaction systems were established to specifically amplify the key conserved genes of these pathogens. Then the RPA products were purified, and enriched with MBs. The absorbance spectra were obtained using THz-TDS technology. The linear range of the RPA-THz for detecting E. coli O157:H7 was 0.55 to 5.5 × 10(4) pg/mL, while for VZV, it was 0.75 to 7.5 × 10(3) pg/mL. The limit of detection (LOD) for bacteria and viruses was 0.226 pg/mL and 0.528 pg/mL, respectively, demonstrating better sensitivity than the qPCR (550 pg/mL and 750 pg/mL, respectively). In addition, the whole amplification and detection process was completed in about 35 minutes. Compared to traditional pathogen detection techniques, the primary advantage of the developed RPA-THz method exhibited high accuracy, good reproducibility, and short detection times, enabling non-ionizing, label-free analysis for rapid detection with high sensitivity and specificity of pathogenic microorganisms. This study provides a theoretical foundation and practical demonstration for the fast and precise detection of pathogenic microorganisms. It establishes a crucial research basis for further development of RPA-THz sensors, advancing technological progress in the field of food safety, medical diagnostics, environmental monitoring, and public health.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。