Modern telecommunications systems rely on the ubiquitous use of radiofrequency (RF) fields. To ensure the safety of living systems under RF exposure, standards have been developed which rely on observed thresholds that produce an adverse response. Unfortunately, real-time imaging of single-cell responses to high-peak power RF exposures is experimentally difficult, as high-power RF may damage sensitive electronics such as cameras or photodetectors, and any metal in the exposure zone (such as a microscope objective or translation stage) interacts with the RF by reflecting the RF field, acting as an antenna, or altering the dose delivered to the sample. In this work, we present a custom fluorescence microcopy system compatible with high-power RF environments. Our device uses a custom, 3D-printed objective consisting entirely of plastic and glass components as well as a coherent fiber bundle to relay light between the exposure zone and the fluorescence detection scheme. Our device was validated against a high-end commercial confocal microscope by comparing cellular responses to a well-characterized nanosecond pulsed electric field (nsPEF) stimulus delivered via an electrode pair. Our system performed well under extreme RF exposure, demonstrating continuous fluorescence imaging and maintenance of the focal plane despite >40°C temperature variation at the sample caused by high peak power free-field RF exposure at a frequency of 2.8 GHz. This system is intended to aid researchers in investigating real-time biological responses to radiofrequency and microwave sources.
3D-printed fiber-bundle fluorescence microscope for quantifying single-cell responses to high-power radiofrequency sources.
用于量化单细胞对高功率射频源反应的 3D 打印光纤束荧光显微镜
阅读:10
作者:O'Connor Sean P, Cruz Santory Aryana J, Clary Joseph E, Sedelnikova Anna V, Brawley Zachary T, Kulow Ryan M, Noojin Gary D, Nelson-Rakofsky Kaitlin S, Bixler Joel N, Steelman Zachary A
| 期刊: | Biomedical Optics Express | 影响因子: | 3.200 |
| 时间: | 2025 | 起止号: | 2025 Feb 18; 16(3):1071-1089 |
| doi: | 10.1364/BOE.550033 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
