Therapeutic combination of L-ascorbic acid, N-acetylcysteine, and dimethyl fumarate in Friedreich's ataxia: insights from in vitro models.

L-抗坏血酸、N-乙酰半胱氨酸和富马酸二甲酯联合治疗弗里德赖希共济失调:来自体外模型的见解

阅读:17
作者:Edzeamey Fred Jonathan, Ramchunder Zenouska, Valle Gómez Adamo, Ge Haobo, Marobbio Carlo Marya Thomas, Pourzand Charareh, Virmouni Sara Anjomani
Friedreich's Ataxia (FRDA) is a rare neurological disorder caused by an abnormal expansion of Guanine-Adenine-Adenine (GAA) repeat in intron 1 of the FXN gene, which encodes frataxin, leading to reduced expression of frataxin, a mitochondrial protein essential for cellular homeostasis. Frataxin deficiency results in oxidative stress and mitochondrial dysfunction and impaired redox balance. Currently, there is no cure for FRDA. This study aimed to evaluate the therapeutic potential of antioxidants dimethyl fumarate (DMF), N-acetylcysteine (NAC), and L-ascorbic acid (LAA) in restoring mitochondrial redox homeostasis and frataxin levels in FRDA patient-derived fibroblasts and 2D sensory neurons. We assessed cell viability, mitochondrial and cellular reactive oxygen species (ROS) levels, mitochondrial DNA copy number, mitochondrial membrane potential, and frataxin and NRF2 expression at both mRNA and protein levels following antioxidant treatment, either individually or in combination. Treatment with LAA, NAC, and DMF resulted in significant reductions in mitochondrial and cellular ROS, along with increased FXN and NRF2 expression, and enhanced NRF2 nuclear translocation. Furthermore, these compounds improved aconitase/citrate synthase activity, GSH/GSSG ratios, and mitochondrial membrane potential. Notably, the combination of LAA and NAC consistently alleviated multiple disease-associated defects in FRDA cells, suggesting its potential as a promising therapeutic approach.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。