Spatial regulation of mitochondrial membrane potential by α5β1 integrin engagement in collective cell migration.

阅读:8
作者:Pacheco Gustavo G, Dzamba Bette J, Endo Wakako, Edwards Benjamin C, Khan Minah, Comlekoglu Tien, Shook David R, Quasey Keri, Bjerke Maureen A, Hirsh Glen D, Kashatus David F, DeSimone Douglas W
The mechanistic links between mechanical forces and bioenergetics remain elusive. We report an increase in mitochondrial membrane potential (MMP) along the leading row of collectively migrating Xenopus laevis mesendoderm cells at sites where fibronectin-α5β1 integrin substrate traction stresses are greatest. Real-time metabolic analyses reveal α5β1 integrin-dependent increases in respiration efficiency in cells on fibronectin substrates. Elevation of metabolic activity is reduced following pharmacologic inhibition of focal adhesion kinase (FAK; also known as PTK2) signaling. Attachment of mesendoderm cells to fibronectin fragments that support differing α5β1 integrin conformational and ligand-binding affinity states, increases MMP when both the Arg-Gly-Asp (RGD) and Pro-Pro-Ser-Arg-Asn (PPSRN) synergy sites of fibronectin are engaged by the receptor. Cell stretch on deformable fibronectin substrates also results in a FAK-dependent increase in MMP. Inhibition of MMP or ATP-synthase activity slows collective cell migration velocity in vivo, further suggesting that integrin-dependent adhesion and signaling contribute to metabolic changes. These data highlight an underexplored link between extracellular matrix (ECM)-integrin adhesion and metabolic activity in embryonic cell migration. We propose that fibronectin-integrin adhesion and signaling help shape the metabolic landscape of collectively migrating cells.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。