The foot processes of astrocytes cover over 60% of the surface of brain microvascular endothelial cells, regulating tight junction integrity. Retraction of astrocyte foot processes has been postulated to be a key mechanism in pathology. Therefore, movement of an astrocyte in response to a proinflammatory cytokine or even limited retraction of processes would result in leaky junctions between endothelial cells. Astrocytes lie at the gateway to the CNS and are instrumental in controlling leukocyte entry. Cultured astrocytes typically have a polygonal morphology until stimulated. We hypothesized that cultured astrocytes which were induced to stellate would have an activated phenotype compared with polygonal cells. We investigated the activation of astrocytes derived from adult macaques to the cytokine TNF-α under resting and stellated conditions by four parameters: morphology, intermediate filament expression, adhesion, and cytokine secretion. Astrocytes were stellated following transient acidification; resulting in increased expression of GFAP and vimentin. Stellation was accompanied by decreased adhesion that could be recovered with proinflammatory cytokine treatment. Surprisingly, there was decreased secretion of proinflammatory cytokines by stellated astrocytes compared with polygonal cells. These results suggest that astrocytes are capable of multiple phenotypes depending on the stimulus and the order stimuli are applied.
Transient acidification and subsequent proinflammatory cytokine stimulation of astrocytes induce distinct activation phenotypes.
星形胶质细胞的短暂酸化和随后的促炎细胞因子刺激会诱导不同的激活表型
阅读:9
作者:Renner Nicole A, Sansing Hope A, Inglis Fiona M, Mehra Smriti, Kaushal Deepak, Lackner Andrew A, Maclean Andrew G
| 期刊: | Journal of Cellular Physiology | 影响因子: | 4.000 |
| 时间: | 2013 | 起止号: | 2013 Jun;228(6):1284-94 |
| doi: | 10.1002/jcp.24283 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
