An in vivo CRISPR screen in chick embryos reveals a role for MLLT3 in specification of neural cells from the caudal epiblast.

阅读:3
作者:Libby Ashley R G, Rito Tiago, Radley Arthur, Briscoe James
Tissue development relies on the coordinated differentiation of stem cells in dynamically changing environments. The formation of the vertebrate neural tube from stem cells in the caudal lateral epiblast is a well-characterized example. Despite an understanding of the signalling pathways involved, the gene regulatory mechanisms remain poorly defined. To address this, we developed a multiplexed in vivo CRISPR screening approach in chick embryos targeting genes expressed in the caudal epiblast and neural tube. This revealed a role for MLLT3, a component of the super elongation complex, in the specification of neural fate. Perturbation of MLLT3 disrupted neural tube morphology and reduced neural fate acquisition. Mutant forms of retinoic acid receptor A lacking the MLLT3 binding domain similarly reduced neural fate acquisition. Together, these findings validate an in vivo CRISPR screen strategy in chick embryos and identify a previously unreported role for MLLT3 in caudal neural tissue specification.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。