LDHB suppresses the PDCoV proliferation by targeting viral nucleocapsid protein for autophagic degradation.

LDHB 通过靶向病毒核衣壳蛋白进行自噬降解来抑制 PDCoV 增殖

阅读:8
作者:Wu Xiaohan, Lan Shijin, Wang Ying, Yang Shixing, Shen Quan, Wang Xiaochun, Liu Yuwei, Yang Hongfeng, Ji Likai, Zhang Wen
Porcine deltacoronavirus (PDCoV) is a newly identified enteric coronavirus that causes serious diarrhea and vomiting in pigs, leading to substantial economic losses globally. Studying the molecular interactions between virus and host proteins is crucial for developing new anti-PDCoV strategies. Here, the role and mechanism of lactate dehydrogenase B (LDHB) in PDCoV replication were investigated. LDHB suppresses PDCoV replication in a dose-dependent manner, whereas the knockdown of LDHB via RNA interference enhances virus proliferation in LLC-PK1 cells. Mechanistically, LDHB directly interacts with PDCoV N protein in the cytoplasm. LDHB mediated the autophagic degradation of PDCoV N protein, thereby inhibiting viral replication. To our interests, PDCoV infection or PDCoV N protein expression significantly reduces LDHB expression in cells. Further studies showed that PDCoV N protein, dependent on its LIR motif, binds to the LC3. It facilitates LDHB degradation, possibly as a strategy for viral evasion from host cell cytosolic defense mechanisms. Overall, the present study provided a novel regulatory mechanism of LDHB in PDCoV infection and suggested new avenues for the antiviral strategy. IMPORTANCE: This study elucidates the intricate interaction between the PDCoV N protein and LDHB within the context of viral infection and immune evasion strategies. By demonstrating that LDHB can suppress PDCoV replication through a novel mechanism involving the autophagic degradation of the viral N protein, the research highlights the potential of targeting such interactions for antiviral strategies. The findings not only expand our understanding of how PDCoV manipulates host cell pathways to its advantage but also open up new avenues for therapeutic interventions that could mitigate the impact of this and similar viral pathogens.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。