Plant growth-promoting rhizobacteria (PGPR) are soil microorganisms through which phytohormones and other bioactive compounds are produced, thereby enhancing plant growth and stress tolerance. In this study, a novel PGPR strain was identified from the rhizosphere of Lycium chinense seedlings, which produce protein-rich fruit. Whole-genome sequencing and annotation revealed that the genome of this strain, designated Pseudomonas sp. A-2, consists of a 6.65-Mb circular chromosome with 5,980 predicted protein-coding sequences. Comparative genomic analysis classified the strain within the genus Pseudomonas. The A-2 strain genome encodes proteins involved in indole-3-acetic acid (IAA) biosynthesis and signaling pathways, which was validated through IAA detection assays and quantitative analyses. Plant growth rates were significantly enhanced by the A-2 strain treatment, with increases of 3-fold in Arabidopsis, 1.5-fold in tobacco, and 1.35-fold in peanut. In Arabidopsis thaliana, expression of key genes associated with lateral and adventitious root formation was induced by the A-2 strain treatment, including ARFs, AMI1, TAA1, YUCs, IBRs, TOB1, and ECH2. Moreover, enhanced tolerance to salt stress was conferred by the A-2 strain treatment, as evidenced by improved biomass accumulation, chlorophyll content, antioxidant enzyme activity, and reduced lipid peroxidation. Levels of total soluble sugars, including trehalose, were elevated in the A-2 strain treated plants, suggesting a role in osmotic adjustment under stress. The plant growth-promoting and stress-alleviating properties of Pseudomonas sp. A-2 highlight its potential application as an effective biological agent for sustainable agriculture.
Functional characterization of a novel plant growth-promoting rhizobacterium enhancing root growth and salt stress tolerance.
对一种新型植物促生根际细菌的功能特性进行了表征,该细菌能够增强根系生长和提高耐盐性
阅读:7
作者:Lee Sanghee, Kim Young Kook, Nie Haulin, Ahn Jongmin, Kim Nayoung, Ko Seo-Rin, Choi Ah-Hyeon, Kwon Hayoung, Peng Yuxin, Kwon Suk-Yoon, Shin Ah-Young
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 19; 15(1):30405 |
| doi: | 10.1038/s41598-025-14065-1 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
