Dental pulp stem cells' secretome enhances pulp repair processes and compensates TEGDMA-induced cytotoxicity

牙髓干细胞分泌组增强牙髓修复过程并补偿 TEGDMA 诱导的细胞毒性

阅读:6
作者:Theodoros Paschalidis, Athina Bakopoulou, Polyxeni Papa, Gabriele Leyhausen, Werner Geurtsen, Petros Koidis

Methods

DPSCs cultures were established and characterized for stem cell markers with flow cytometry. CM was collected from DPSCs under serum deprivation conditions (SDC) and normal serum conditions (NSC) at various time-points. CM effects on DPSCs viability, migration and mineralization potential were evaluated by MTT assay, transwell insert and in vitro scratch assay and Alizarin Red staining/quantification respectively. TEGDMA (0.25-2.0mM) cytotoxicity regarding the same biological endpoints was tested in the presence/absence of CM. TGF-β1 and FGF-2 secretion in CM was measured by ELISA.

Results

CM collected under SDC (4d) was able to increase cell viability by 20-25% and to reduce TEGDMA cytotoxicity by 20% (p<0.05). CM positive effects were not obvious when collected under NSC. Transwell assay showed significant increase (26%, p<0.05) of DPSCs' migration after CM exposure, whereas both migration assays could not support a migration rate improvement in TEGDMA-treated cultures exposed to CM compared to TEGDMA alone. CM significantly (p<0.01) increased DPSCs mineralization potential and completely counteracted TEGDMA cytotoxicity on this process. ELISA analysis showed a time-dependent increase of TGF-β1 and a TEGDMA concentration-dependent increase of both TGF-β1 and FGF-2 in CM. Significance: These findings suggest that DPSCs secretome increases their viability, migration and mineralization potential and counteracts TEGDMA-induced cytotoxicy, revealing a novel mechanism of DPSCs autocrine signaling on pulp repair processes.

Significance

These findings suggest that DPSCs secretome increases their viability, migration and mineralization potential and counteracts TEGDMA-induced cytotoxicy, revealing a novel mechanism of DPSCs autocrine signaling on pulp repair processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。