Chronic kidney disease (CKD) often progresses to renal fibrosis, which is characterized by excessive extracellular matrix deposition and is also linked to ferroptosis. The present study investigated how TGF-β1 induces ferroptosis and thereby contributes to renal tubular epithelial cell fibrosis. Bioinformatics was employed to identify the differentially expressed genes relevant to renal fibrosis. An in vitro TGF-β1-induced fibrosis model of HK-2 cells was established, and the cell shape index was calculated. Fer-1, NAC, and PD98059 were utilized for targeted intervention, and their mechanisms were verified by transducing cells with WISP1-targeting shRNA lentivirus. Cell morphology was examined under a microscope, and cells were collected to determine the levels of ferroptosis-related factors (Fe(2+), MDA, GSH, and LPO). Western blotting was performed to measure the levels of ERK1/2, WISP1, and ferroptosis indicators (GPX4 and hyperoxidized PRDX4). Flow cytometry was performed to determine the ROS levels and the rate of cell ferroptosis. TGF-β1 induced the transformation of HK-2 cells into fibroblast-like cells, leading to increased ROS levels, activation of the ERK1/2-WISP1 signaling pathway, and upregulation of ferroptosis and fibrosis-related factors. However, these effects could be effectively inhibited through pretreatment with Fer-1, NAC, and PD98059 individually, which further validated the involvement of the ERK1/2-WISP1 signaling pathway. In addition, WISP1 knockdown suppressed the cell transformation into fibroblast-like cells as well as the ferroptosis process, thereby reducing the expression levels of ferroptosis and fibrosis-related factors. The present study substantiated the process through which TGF-β1 elicits the production of ROS and triggers ferroptosis via the ERK1/2-WISP1 signaling pathway to facilitate the development of renal tubular epithelial cell fibrosis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10616-025-00719-5.
TGF-β1 induces ROS to activate ferroptosis via the ERK1/2-WISP1 pathway to promote the progression of renal tubular epithelial cell fibrosis.
TGF-β1 诱导 ROS 通过 ERK1/2-WISP1 通路激活铁死亡,从而促进肾小管上皮细胞纤维化的进展
阅读:10
作者:Zhou Yi, Luan Fengwu, Feng Xiaonan, Yu Min, Li Lu, Guo Xiaoyan, Yin Xiaolong
| 期刊: | Cytotechnology | 影响因子: | 1.700 |
| 时间: | 2025 | 起止号: | 2025 Apr;77(2):61 |
| doi: | 10.1007/s10616-025-00719-5 | 研究方向: | 细胞生物学 |
| 信号通路: | MAPK/ERK | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
