Elacridar Inhibits BCRP Protein Activity in 2D and 3D Cell Culture Models of Ovarian Cancer and Re-Sensitizes Cells to Cytotoxic Drugs.

埃拉克瑞达抑制卵巢癌 2D 和 3D 细胞培养模型中的 BCRP 蛋白活性,并使细胞重新对细胞毒性药物敏感

阅读:11
作者:Stasiak Piotr, Sopel Justyna, Płóciennik Artur, Musielak Oliwia, Lipowicz Julia Maria, Rawłuszko-Wieczorek Agnieszka Anna, Sterzyńska Karolina, Korbecki Jan, Januchowski Radosław
Chemotherapy resistance is a major obstacle in the treatment of ovarian cancer, often resulting in disease recurrence and poor prognosis for patients. A key contributor to this resistance is the overexpression of ATP-binding cassette (ABC) transporters, including breast cancer resistance protein (BCRP/ABCG2), which actively effluxes chemotherapeutic agents such as topotecan (TOP) or mitoxantrone (MIT), limiting their intracellular accumulation and efficacy. This study investigated the potential of elacridar (GG918), a potent dual P-gp and BCRP inhibitor, to overcome drug resistance in ovarian cancer cell lines. Both TOP-sensitive and TOP-resistant ovarian cancer cells were grown in two-dimensional (2D) monolayers and three-dimensional (3D) spheroid models to better mimic the tumor microenvironment. The expression of the ABCG2 gene was quantified via qPCR and BCRP protein levels were assessed by western blotting and immunofluorescence. Drug response was evaluated using MTT viability assays, while BCRP transporter activity was examined using flow cytometry and microscopic assessment of the intracellular retention of BCRP fluorescent substrates (Hoechst 33342 and MIT). In both 2D and 3D cultures, elacridar effectively inhibited BCRP function and significantly enhanced sensitivity to TOP. These findings suggest that elacridar can inhibit BCRP-mediated drug resistance in ovarian cancer cell models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。