Remote ischemia precondition protects against renal IRI through apoptosis associated vesicles carrying MIF protein via modulating DUSP6/JNK signaling axis.

阅读:3
作者:Zhang Nieke, Huang Zhicong, Xia Yi, Tao Shuchun, Wu Tiange, Sun Si, Zhu Yongkun, Jiang Guiya, Lu Xun, Gao Yue, Guo Fangfang, Cao Rui, Chen Shuqiu, Zhang Lei, Zou Xiangyu, Chen Ming, Zhang Guangyuan
BACKGROUND: Remote ischemic preconditioning (rIPC) has been reported to protect against kidney ischemia-reperfusion injury (IRI) through the delivery of extracellular vesicles (EVs). Among these, apoptosis-induced compensatory proliferation signaling-related vesicles (ACPSVs) can transmit proliferation signals to surrounding cells. However, the underlying mechanisms remain unclear. This study aimed to investigate the role of ACPSVs in renal IRI following rIPC and to elucidate the associated mechanisms. RESULTS: We demonstrated that rIPC plasma or ACPSVs alleviated renal damage and inflammation, with the protective effects abolished upon the removal of ACPSVs from the plasma. EVs isolated via differential centrifugation exhibited defining characteristics of ACPSVs. Co-culture experiments revealed that ACPSVs reduced apoptosis and enhanced the viability of HK-2 cells under hypoxia/reoxygenation (H/R) conditions. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses highlighted the critical role of macrophage migration inhibitory factor (MIF) protein in ACPSVs. Using CRISPR/Cas9 technology, we generated MIF-knockout HeLa cells to induce the production of MIF-deficient ACPSVs. The protective effects of ACPSVs were significantly attenuated when MIF was knocked out. Transcriptome sequencing and chromatin immunoprecipitation (ChIP) assays revealed that MIF suppresses dual-specificity phosphatase 6 (DUSP6) expression by promoting H3K9 trimethylation (H3K9me3) in the DUSP6 promoter region, thereby activating the JNK signaling pathway. In rescue experiments, treatment with the DUSP6 inhibitor BCI effectively restored the protective function of MIF-deficient ACPSVs. CONCLUSION: This study underscores the protective role of ACPSVs derived from rIPC-treated rats and serum-starved cells against renal IRI through the MIF/DUSP6/JNK signaling axis, offering a potential clinical therapeutic strategy for acute kidney injury induced by IRI. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12951-025-03505-9.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。