The nuclear pore complex connects energy sensing to transcriptional plasticity in longevity.

核孔复合体将能量感知与寿命中的转录可塑性联系起来

阅读:7
作者:Zhou Yifei, Ahsan Fasih M, Soukas Alexander A
As the only gateway governing nucleocytoplasmic transport, the nuclear pore complex (NPC) maintains fundamental cellular processes and deteriorates with age. However, the study of age-related roles of single NPC components remains challenging owing to the complexity of NPC composition. Here we demonstrate that the master energy sensor, AMPK, post-translationally regulates the abundance of the nucleoporin NPP-16/NUP50 in response to nutrient availability and energetic stress. In turn, NPP-16/NUP50 promotes transcriptomic activation of lipid catabolism to extend the lifespan of Caenorhabditis elegans independently of its role in nuclear transport. Rather, the intrinsically disordered region (IDR) of NPP-16/NUP50, through direct interaction with the transcriptional machinery, transactivates the promoters of catabolic genes. Remarkably, elevated NPP-16/NUP50 levels are sufficient to promote longevity and metabolic stress defenses. AMPK-NUP50 signaling is conserved to human, indicating that bridging energy sensing to metabolic adaptation is an ancient role of this signaling axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。