Ovarian cancer remains one of the most aggressive cancers, and resistance to Poly (ADP-ribose) Polymerase inhibitors (PARPi) poses a major therapeutic challenge. SIRT5, a NADâ+â-dependent desuccinylase, plays a crucial role in regulating fatty acid metabolism, which is often reprogrammed in cancer cells to promote drug resistance. This study aimed to investigate the potential of polydopamine (PDA)-polymerized antioxidant nanozyme-loaded SIRT5-modified human umbilical cord mesenchymal stem cells (hUCMSCs) to overcome PARPi resistance in ovarian cancer. We employed multi-omics approaches, including transcriptomics, metabolomics, and proteomics, to identify key molecular pathways associated with resistance mechanisms. High-throughput sequencing and metabolic profiling revealed that SIRT5 modifies fatty acid β-oxidation and regulates the desuccinylation of Enoyl-CoA Hydratase (ECHA), a key enzyme involved in this process. In vitro and in vivo experiments demonstrated that nanozyme-engineered hUCMSCs effectively enhanced PARPi resistance by promoting fatty acid metabolism and desuccinylation. These findings suggest that SIRT5-modified hUCMSCs loaded with antioxidant nanozymes offer a promising therapeutic strategy to combat PARPi resistance in ovarian cancer. The study provides new insights into overcoming drug resistance through metabolic reprogramming and enhances the potential of engineered stem cells in cancer therapy.
SIRT5-modified human umbilical cord mesenchymal stem cells loaded with antioxidant polydopamine nanozyme enhance parpi resistance in ovarian cancer via fatty acid metabolism reprogramming.
SIRT5修饰的人脐带间充质干细胞负载抗氧化剂聚多巴胺纳米酶,通过脂肪酸代谢重编程增强卵巢癌的PARPI耐药性
阅读:7
作者:Zhang Jin, Du Xiuluan, Dai Xin, Liu Yanxiang, Guo Kai, Gu Donghua
| 期刊: | Journal of Nanobiotechnology | 影响因子: | 12.600 |
| 时间: | 2025 | 起止号: | 2025 Jul 4; 23(1):485 |
| doi: | 10.1186/s12951-025-03516-6 | 种属: | Human |
| 研究方向: | 代谢、发育与干细胞、细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
