Intestinal organoid cultures provide a unique opportunity to investigate intestinal stem cell and crypt biology in vitro, although efficient approaches to manipulate gene expression in organoids have made limited progress in this arena. While CRISPR/Cas9 technology allows for precise genome editing of cells for organoid generation, this strategy requires extensive selection and screening by sequence analysis, which is both time-consuming and costly. Here, we provide a detailed protocol for efficient viral transduction of intestinal organoids. This approach is rapid and highly efficient, thus decreasing the time and expense inherent in CRISPR/Cas9 technology. We also present a protocol to generate frozen sections from intact organoid cultures for further analysis with immunohistochemical or immunofluorescent staining, which can be used to confirm gene expression or silencing. After successful transduction of viral vectors for gene expression or silencing is achieved, intestinal stem cell and crypt function can be rapidly assessed. Although most organoid studies employ in vitro assays, organoids can also be delivered to mice for in vivo functional analyses. Moreover, our approaches are advantageous for predicting therapeutic responses to drugs because currently available therapies generally function by modulating gene expression or protein function rather than altering the genome.
Genetic Engineering of Primary Mouse Intestinal Organoids Using Magnetic Nanoparticle Transduction Viral Vectors for Frozen Sectioning.
利用磁性纳米颗粒转导病毒载体对小鼠原代肠道类器官进行基因工程改造,用于冰冻切片
阅读:11
作者:Xian Lingling, Chia Lionel, Georgess Dan, Luo Li, Shuai Shuai, Ewald Andrew J, Resar Linda M S
| 期刊: | Jove-Journal of Visualized Experiments | 影响因子: | 1.000 |
| 时间: | 2019 | 起止号: | 2019 May 10; (147):10 |
| doi: | 10.3791/57040 | 种属: | Mouse、Viral |
| 研究方向: | 其它 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
