Identifying the sex chromosome and sex determination genes in the cattle tick, Rhipicephalus (Boophilus) microplus.

鉴定牛蜱(Rhipicephalus (Boophilus) microplus)的性染色体和性别决定基因

阅读:8
作者:Tidwell Jason P, Bendele Kylie G, Bodine Deanna, Holmes V Renee, Johnston J Spencer, Saelao Perot, Lohmeyer Kimberly H, Teel Pete D, Tarone Aaron M
Rhipicephalus (Boophilus) microplus is globally one of the most economically important ectoparasites of cattle costing the agriculture industry billions of dollars annually. Resistance to chemical control measures has prompted the development of novel methods of control. Recent advancements in genetic control measures for human and other animal vectors have utilized sex determination research to manipulate sex ratios, which have shown promising results in mosquitoes namely Aedes aegypti and Anopheles stephensi. Here, we use R. (B.) microplus as a model to provide foundational research to allow similar avenues of investigation in ticks using R. (B.) microplus as a model. Karyotypes for R. (B.) microplus show an XX:XO sex determining system with the largest chromosome being the sex chromosome. Using flow cytometric methods, the size of the sex chromosome was estimated at 526.91 Mb. All measures to identify the sex chromosome within the cattle tick genome assembly associated sex chromosomal characteristics to two chromosomes. This discrepancy between the assembly and karyotypes of the tick led to generating a new genome assembly with a single adult male specimen. The two chromosomes in question aligned with a single scaffold within the new genome that had a length of 513.29 Mb and was the first time the sex chromosome was identified in an Ixodid genome assembly.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。