N6-methyladenosine (m6A) is an essential RNA modification that regulates gene expression and influences diverse cellular processes. Yet, fully characterizing its transcriptome-wide landscape and biogenesis mechanisms remains challenging. Traditional next-generation sequencing (NGS) methods rely on short-reads aggregation, overlooking the inherent heterogeneity of RNA transcripts. Third-generation sequencing (TGS) platforms offer direct RNA sequencing (DRS) at the resolution of individual RNA molecules, enabling simultaneous detection of RNA modifications and RNA processing events. In this study, we introduce SingleMod, a deep learning model tailored for precise detection of m6A modification on individual RNA molecules from DRS data. SingleMod innovatively employs a multiple instance regression (MIR) framework, leveraging extensive methylation-rate labels provided by the quantitative NGS-based method, and achieves ROC AUC and PR AUC of ~0.95 for single-molecule m6A prediction. Applying SingleMod to human cell lines, we systematically dissect the transcriptome-wide m6A landscape at single-molecule and single-base resolution, characterizing m6A heterogeneity in RNA molecules from the same transcript. Through comparative analyzes across eight diverse species, we quantitatively elucidate three distinct m6A distribution patterns correlated with phylogenetic relationships and suggest divergent regulatory mechanisms. This study provides a framework for understanding the shaping of epitranscriptome in a single-molecule perspective.
Single-molecule direct RNA sequencing reveals the shaping of epitranscriptome across multiple species.
单分子直接 RNA 测序揭示了多种物种表观转录组的形成
阅读:9
作者:Xie Ying-Yuan, Zhong Zhen-Dong, Chen Hong-Xuan, Ren Ze-Hui, Qiu Yuan-Tao, Lan Ye-Lin, Wu Fu, Kong Jin-Wen, Luo Ru-Jia, Zhang Delong, Liu Biao-Di, Shu Yang, Yin Feng, Wu Jian, Li Zigang, Zhang Zhang, Luo Guan-Zheng
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Jun 2; 16(1):5119 |
| doi: | 10.1038/s41467-025-60447-4 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
