Heart rhythm disorders, known as arrhythmias, cause significant morbidity and are one of the leading causes of mortality. Cardiac arrhythmias are frequently treated by implantable devices, such as pacemakers and defibrillators, or by ablation therapy guided by electroanatomical mapping. Both implantable and ablation therapies require sophisticated biointerfaces for electrophysiological measurements of electrograms and delivery of therapeutic stimulation or ablation energy. In this work, a graphene biointerface for in vivo cardiac electrophysiology is reported for the first time. Leveraging sub-micrometer-thick tissue-conformable graphene arrays, sensing and stimulation of the open mammalian heart are demonstrated both in vitro and in vivo. Furthermore, the graphene biointerface treatment of atrioventricular block (the kind of arrhythmia where the electrical conduction from the atria to the ventricles is interrupted) is demonstrated. The graphene arrays show effective electrochemical properties, namely interface impedance down to 40 Ωâcm(2) at 1 kHz, charge storage capacity up to 63.7 mC cm(-2) , and charge injection capacity up to 704 µC cm(-2) . Transparency of the graphene structures allows for simultaneous optical mapping of cardiac action potentials, calcium transients, and optogenetic stimulation while performing electrical measurements and stimulation. The report presents evidence of the significant potential of graphene biointerfaces for advanced cardiac electrophysiology and arrhythmia therapy.
Graphene Biointerface for Cardiac Arrhythmia Diagnosis and Treatment.
阅读:3
作者:Lin Zexu, Kireev Dmitry, Liu Ning, Gupta Shubham, LaPiano Jessica, Obaid Sofian N, Chen Zhiyuan, Akinwande Deji, Efimov Igor R
期刊: | Advanced Materials | 影响因子: | 26.800 |
时间: | 2023 | 起止号: | 2023 Jun;35(22):e2212190 |
doi: | 10.1002/adma.202212190 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。