A highly conserved Toxo1 haplotype directs resistance to toxoplasmosis and its associated caspase-1 dependent killing of parasite and host macrophage

高度保守的 Toxo1 单倍型可抵抗弓形虫病,并可导致 caspase-1 依赖性杀死寄生虫和宿主巨噬细胞

阅读:5
作者:Pierre Cavailles, Pierre Flori, Olivier Papapietro, Cordelia Bisanz, Dominique Lagrange, Ludovic Pilloux, Céline Massera, Sara Cristinelli, Delphine Jublot, Olivier Bastien, Corinne Loeuillet, Delphine Aldebert, Bastien Touquet, Gilbert J Fournié, Marie France Cesbron-Delauw

Abstract

Natural immunity or resistance to pathogens most often relies on the genetic make-up of the host. In a LEW rat model of refractoriness to toxoplasmosis, we previously identified on chromosome 10 the Toxo1 locus that directs toxoplasmosis outcome and controls parasite spreading by a macrophage-dependent mechanism. Now, we narrowed down Toxo1 to a 891 kb interval containing 29 genes syntenic to human 17p13 region. Strikingly, Toxo1 is included in a haplotype block strictly conserved among all refractory rat strains. The sequencing of Toxo1 in nine rat strains (5 refractory and 4 susceptible) revealed resistant-restricted conserved polymorphisms displaying a distribution gradient that peaks at the bottom border of Toxo1, and highlighting the NOD-like receptor, Nlrp1a, as a major candidate. The Nlrp1 inflammasome is known to trigger, upon pathogen intracellular sensing, pyroptosis programmed-cell death involving caspase-1 activation and cleavage of IL-1β. Functional studies demonstrated that the Toxo1-dependent refractoriness in vivo correlated with both the ability of macrophages to restrict T. gondii growth and a T. gondii-induced death of intracellular parasites and its host macrophages. The parasite-induced cell death of infected macrophages bearing the LEW-Toxo1 alleles was found to exhibit pyroptosis-like features with ROS production, the activation of caspase-1 and IL1-β secretion. The pharmacological inactivation of caspase-1 using YVAD and Z-VAD inhibitors prevented the death of both intravacuolar parasites and host non-permissive macrophages but failed to restore parasite proliferation. These findings demonstrated that the Toxo1-dependent response of rat macrophages to T. gondii infection may trigger two pathways leading to the control of parasite proliferation and the death of parasites and host macrophages. The NOD-like receptor NLRP1a/Caspase-1 pathway is the best candidate to mediate the parasite-induced cell death. These data represent new insights towards the identification of a major pathway of innate resistance to toxoplasmosis and the prediction of individual resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。