BACKGROUND: Fluorescence imaging is a widely used technique that permits for cell-type-specific recording from hundreds of neurons simultaneously. Often, to obtain cell-type-specific recordings from more than one cell type, researchers add an additional fluorescent protein to mark a second neuronal subpopulation. Currently, however, no consensus exists on the best expression method for multiple fluorescent proteins. NEW METHOD: We optimized the coexpression of two fluorescent proteins across multiple brain regions and mouse lines. RESULTS: The single-virus method, a viral injection in a double transgenic reporter mouse, results in limited fluorescent coexpression. In contrast the double-virus method, injecting a mixture of two viruses in a Cre driver mouse, results in up to 70 % coexpression of the fluorescent markers in vitro. Using the double-virus method allows for population activity recording and neuronal subpopulation determination. COMPARISON WITH EXISTING METHOD: The standard for expressing two fluorescent proteins is to use a double transgenic reporter mouse with a single viral injection. Injecting two viruses into a Cre driver mouse resulted in significantly higher coexpression compared to the standard method. This result generalized to multiple brain regions and mouse lines in vitro, as well as in vivo. CONCLUSION: Efficiently coexpressing multiple fluorescent proteins provides population activity while identifying a neuronal subpopulation of interest. The improved coexpression is applicable to a wide breadth of experiments, ranging from engram investigation to voltage imaging.
Determining the optimal expression method for dual-color imaging.
确定双色成像的最佳表达方法
阅读:7
作者:Norman Jacob F, Rahsepar Bahar, Noueihed Jad, White John A
| 期刊: | Journal of Neuroscience Methods | 影响因子: | 2.300 |
| 时间: | 2021 | 起止号: | 2021 Mar 1; 351:109064 |
| doi: | 10.1016/j.jneumeth.2020.109064 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
