BACKGROUND: High-precision neurosurgical targeting in nonhuman primates (NHPs) often requires presurgical anatomical mapping with noninvasive neuroimaging techniques (MRI, CT, PET), allowing for translation of individual anatomical coordinates to surgical stereotaxic apparatus. Given the varied tissue contrasts that these imaging techniques produce, precise alignment of imaging-based coordinates to surgical apparatus can be cumbersome. MRI-compatible stereotaxis with radiopaque fiducial markers offer a straight-forward and reliable solution, but existing commercial options do not fit in conformal head coils that maximize imaging quality. NEW METHOD: We developed a compact MRI-compatible stereotaxis suitable for a variety of NHP species (Macaca mulatta, Macaca fascicularis, and Cebus apella) that allows multimodal alignment through technique-specific fiducial markers. COMPARISON WITH EXISTING METHODS: With the express purpose of compatibility with clinically available MRI, CT, and PET systems, the frame is no larger than a human head, while allowing for imaging NHPs in the supinated position. This design requires no marker implantation, special software, or additional knowledge other than the operation of a common large animal stereotaxis. RESULTS: We demonstrated the applicability of this 3D-printable apparatus across a diverse set of experiments requiring presurgical planning: 1) We demonstrate the accuracy of the fiducial system through a within-MRI cannula insertion and subcortical injection of a viral vector. 2) We also demonstrated accuracy of multimodal (MRI and CT) alignment and coordinate transfer to guide a surgical robot electrode implantation for deep-brain electrophysiology. CONCLUSIONS: The computer-aided design files and engineering drawings are publicly available, with the modular design allowing for low cost and manageable manufacturing.
An open-source MRI compatible frame for multimodal presurgical mapping in macaque and capuchin monkeys.
一种开源的 MRI 兼容框架,用于猕猴和卷尾猴的多模态术前定位
阅读:15
作者:Liang Lucy, Zimmermann Rollin Isabela, Alikaya Aydin, Ho Jonathan C, Santini Tales, Bostan Andreea C, Schwerdt Helen N, Stauffer William R, Ibrahim Tamer S, Pirondini Elvira, Schaeffer David J
| 期刊: | Journal of Neuroscience Methods | 影响因子: | 2.300 |
| 时间: | 2024 | 起止号: | 2024 Jul;407:110133 |
| doi: | 10.1016/j.jneumeth.2024.110133 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
